Exercise 6

Find the general solution for each of the following first order ODEs:

$$
x u^{\prime}-u=x^{2} \sin x, x>0
$$

Solution

First rewrite the differential equation so that the coefficient of u^{\prime} is 1 .

$$
u^{\prime}-\frac{1}{x} u=x \sin x
$$

This is an inhomogeneous first order linear ODE, so we can multiply both sides by the integrating factor,

$$
I(x)=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=x^{-1}
$$

to solve it. The equation becomes

$$
x^{-1} u^{\prime}-x^{-2} u=\sin x .
$$

Observe that the left side can be written as $\left(x^{-1} u\right)^{\prime}$ by the product rule.

$$
\frac{d}{d x}\left(x^{-1} u\right)=\sin x
$$

Now integrate both sides with respect to x.

$$
x^{-1} u=-\cos x+C
$$

Therefore,

$$
u(x)=x(C-\cos x), x>0
$$

